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Abstract

In this paper we present an algebraic formulation for
the constraint manifold of the spatial CC dyad in
the image space of spatial displacements. We then
present a technique, utilizing the constraint manifold,
for performing the dimensional synthesis of mecha-
nisms for rigid body guidance through n positions.
Finally, we present numerical results for 10 prescribed
positions for the coupler of a spatial 4C mechanism.

1 Introduction

In Bodduluri 1991 the solution to four position rigid
body guidance for the spatial 4C mechanism was pre-
sented. Here we extend the works of Ravani and Roth
1983, Bodduluri 1990, and McCarthy 1991 to the di-
mensional synthesis of spatial 4C mechanisms for n
position rigid body guidance, see Fig. 1. The first step
of the design process is to define the design goal of
the mechanism in terms of the desired positions of the
moving body. In the case of 4C mechanisms, if more
than 5 positions are specified there will be, in general,
no exact solution, see Suh and Radcliffe 1978. That is
to say, there will be no mechanism which passes pre-
cisely through all of the desired positions. Therefore,
we utilize an optimization procedure first derived by
Ravani and Roth 1983 by which we vary the synthesis
_ variables so as to minimize the position error of the
mechanism. ‘

The optimization algorithm involves writing the
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kinematic constraint equation of the CC dyad us-
ing the components of a dual quaternion. We view
these equations as constraint manifolds in the image
space of spatial displacements, see Bottema and Roth
1979 and McCarthy 1990. The result is an analytical
representation of the workspace of the dyad which is
parameterized by its dimensional synthesis variables.
We then combine two CC dyads to form a 4C closed
chain. The constraint manifold of the 4C mechanism
is simply the intersection of the constraint manifolds
of its two CC sub chains. This intersection provides
an analytical representation of the workspace of the
4C mechanism in the image space of spatial displace-
ments. The optimization goal is to vary the design
variables such that all of the prescribed positions are
either: (1) in the workspace, or, (2) the workspace
comes as close as possible to all of the desired posi-
tions. In what follows, we apply the optimization al-
gorithm to the design of spatial four bar mechanisms
with four cylindric joints, the 4C mechanism, and il-
lustrate the procedure by an example for 10 desired
positions.

2 Spatial Displacements

First, we review the use of dual quaternions for de-
scribing spatial displacements.

A general spatial displacement may be described
by a 3 x 3 orthonormal rotation matrix [A] and a
displacements vector d = (ds,dy,d;)T. Associated
with the matrix of rotation [A] is an axis of rotation




Figure 1: A Spatial 4C Mechanism

s and a rotation angle about that axis 6.

Using the translation vector d, the rotation axis s,
and the rotation angle 8, we can represent the spa-
tial displacement by the eight dimensional vector, g,
which is written as, see McCarthy, 1990,

g1 = sgsin 5 (1)
g2 = Sysin -2-
gs = s;sing
ga = cosg
g5 = ("dzq2 + dyQS + d::94)
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6 = (dqu — azq3 + dy94)
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We refer to q as a dual quaternion. The components
of q satisfy,

Gi@) : g+E+E+d-1=0 @)
G2(@) : @195+ ¢296 + 9397+ 9498 =0

Note that q, given by Eq. 1, is an eight dimensional
vector which satisfies the two constraint equations,
Eqgs. 2, therefore, the components of q form a six di-
mensional algebraic manifold. We denote this mani-
fold as the image space of spatial displacements.
The rotation matrix, [A], and the translation vec-
tor, d, can be recovered from the dual quaternion, q,
describing a spatial displacement as follows,
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g} —-g—-df+4} 2(9192 — qagqs)
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Equations 3 and 4 will be central to our derivation of
the constraint manifold of the CC dyad.

3 Constraint Manifolds

In this section we derive the algebraic constraint man-
ifold of the spatial CC dyad. This dyad may be com-
bined serially to form a complex open chain or, when

—g3 ~ g2+ +q?




connected back to the fixed link, may be joined so as
to form a closed chain; a mechanism or linkage.

The continuous motion of the end link of an open
chain maps into a constraint manifold in the image
space. For closed chains the constraint manifold of
the mechanism is the intersection of the constraint
manifolds of its open subchains.

The constraint manifolds are derived by using the
geometric conditions that the joints of the dyad im-
pose on the moving body. The vector equations for
the geometric constraints are based upon the work of
Suh and Radcliffe, 1978, and Bodduluri, 1990. Using
the rotation matrix and translation vector, expressed
by the image space coordinates and the geometric
constraint equations of the dyad we arrive at alge-
braic constraint equations in the image space that are

parameterized by the dimensional synthesis variables
of the dyad.

3.1 Spatial CC Dyad

A CC dyad is shown in Fig. 2. Let the axis of the
fixed joint be specified by the dual vector, & = u +
eu’, measured in the fixed reference frame and let the
moving axis be specified by, A = A+€A°, measured in
the moving frame, M. Let us define the dual vector 1
as representing the moving axis Xﬁas measured in the
fixed frame F'. The dual vectors 1 and X are related
by the dual orthogonal matrix [A], where [A] = [4] +
€[D][A], and [D] is the 3 x 3 skew-symmetric matrix
from the translation vector d.

i=[4A (5)
Eq. 5 can be expanded and rewritten as,
I=146"=[AA+ ¢([A\° + [D][A]N)  (6)

Because the two axes are connected by a rigid link
we have that & = (o, a) must remain constant.

a-1=1-[4]A = cosa (7
We substitute Eq. 6 into Eq. 7 and obtain,

u-[A]A+ e {u- ([AA° + [D][A]A) +u® - [A]A}
=cosa—easina (8)

From the real part of Eq. 8 we obtain the constant
twist condition,

u-[AJA~cosa =10 9)

From the dual part of Eq. 8 we obtain the constant
moment condition as,

u - ([A]X° + [D][AIN) +u® - [A]A + asina =0 (10)
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Equations 9 and 10 are the implicit constraint equa-
tions for a spatial CC dyad.

To obtain an algebraic expression for the constraint
manifold in the image space of spatial displacements
we substitute Equations 3 and 4 into the constraint
equations, Eq. 9 and Eq. 10, to yield,

CCi(q,r):

u-[A@)]A—cosa=0 (11)
CCy(q,r):

u- ([A@IX° + [D@]A@)IN)
+u® - [A(@)A +asina=0 (12)

The 14 dimensional design vector r for a spatial
CC dyad is therefore,

(13)

where 11 and A specify the fixed and moving C joints
of the dyad and finally « is the twist and a is the
normal length of the CC link.

4 Fitting Image Curves

‘We now describe the method described by Ravani and
Roth, 1983, to perform dimensional synthesis using
constraint manifolds. The first step is to formulate
the constraint manifold of the mechanism. In the case
of a closed chain, such as a spatial 4C mechanism,
this involves two spatial CC dyads. The equations
of the constraint manifolds of the dyads and the dual
quaternion constraint equation are combined to form
the complete constraint manifold CM (g, r).

CC4(q,r)
CCb(Ei) 1‘)
G1(Q)
G2(a)

where CC,(q, ) and CCjy(q, r) are from Equations 11
and 12 written for each dyad of the mechanism, G1(q)
and G2(q) are the dual quaternion constraint equa-
tions, Eq. 2, and r is the vector of dimensional syn-
thesis variables. '
Here, the goal is to determine the design variables,
r, so that the constraint manifold passes through, or

CM(q,r): =0 (14)




Figure 2: A Spatial CC Dyad

as close as possible to, n desired points in the image
space. Let {g represent one desired point in the im-
age space; either a dual quaternion, quaternion, or
planar quaternion. We assume that qq does not lie
on the constraint manifold and write a Taylor series
expansion of the constraint manifold about qq. In
other words, we approximate the level surface of the
image curve through §q by its tangent hyperplane.

CM(ga,r)+ Q—C—%gf—’r)(i -qy)=0 (15

Let us now reformulate Eq. 15 as a system of linear
equations,
[Jlx=b (16)

where, [J] is the matrix of partial derivatives of
CM(q,r),b=~-CM(qq,r),and x = q—qq. In gen-
eral there will be infinite solutions to Eq. 16. There-
fore, we seek the minimum norm solution of Eq. 16.
Note that x is in some sense a measure of the “dis-
tance” from qq to CM(Q,r) and that even though
this metric is usefull for designing mechanisms it pos-
sesses the undesirable characteristic of being variant
with respect to choice of coordinate system when used
for designing planar and spatial mechanisms. Un-
fortunately the metric’s dependency upon choice of
coordinate system is to be expected for as has been
stated by several researchers in the field there is no

bi-invariant metric for planar and spatial motions, see
Kazerounian and Rastegar 1992, and Duffy 1990.

The minimum norm solution of Eq. 16 is found by
minimizing the Lagrangian function,

A(x,b) = xTx 4+ AT([J]x — b) 1n

where A is a vector of Lagrange multipliers. The min-
imum of Eq. 17 is found when,

ON | o \Tr_

We now combine Eq. 16 with Eq. 18 to form the fol-
lowing system of equations,

L @] (3) = (5) o
We solve Eq. 19, by use of the pseudo inverse of [J],

to yield,
x* = [T b (20)

From the definition of x we have,
§ =qa+x" (21)

where @* approximates the point-on the constraint
manifold closest to qq. Moreover, we may use q* to




Figure 3: A Representation of Normal Image Curve
Fitting

approximate the normal distance, e(r), from qq to

the constraint manifold,

e(r)’ = (@ - a)7 (@ — qa) = |7 (II17) " bj?

(22)

Finally, performing n position synthesis requires

computing e(r) for each desired position, Gq. The
total error, E(r), is then given by,

Br) =Y ()

i=1

(23)

Thus, we have formulated the n position dimensional
synthesis problem into the form of a minimization
problem with objective function E(r). In abstraction,
we are manipulating the dimensional synthesis vari-
ables, r, such that the image curve of the mechanism
passes through, or comes as close as possible to, the
set of desired positions, G4. A planar representation
of this methodology of image curve fitting is illus-
trated in Fig. 3. Here, the desired positions are the
points in the image space and the simple closed curve
is the constraint manifold. We estimate the normal
distance from the curve to the points using a tangent
approximation to the curve and seek to minimize this
distance for all desired points.

5 The Optimization Problem
Having derived the objective function, we are now

able to formally pose our design objective for n po-
sitions in the form of an unconstrained optimization
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[ Pos. | X [ Y[ Z JTLong [ Lat. | Roll |

1 1.0 |00 5.0 [ 1000 007 0.0
2 20 (0.0 4.0 90.0 0.0 | 10.0
3 3.0 10.0] 3.0 80.0 0.0 | 20.0
4 40 [ 0.0 2.0 70.0 0.0 | 30.0
5 50 100 1.0 60.0 0.0 | 40.0
6 6.0 1 0.0 ~1.0| 50.0 0.0 | 50.0
7 7.0 [ 0.0 ]| —-2.0| 40.0 0.0 | 60.0
8 8.0 {0.0] -3.0| 30.0 0.0 | 70.0
9 9.0 (0.0} —4.01 20.0 0.0 | 80.0
10 {1001 0.0} -5.0[ 10.0 0.0 | 90.0
Table 1: The 10 Desired Positions
problem.
Minimize: E(r) (24)

Given: q1,42,4s, .., 4n

where E(r) is given by Eq. 23, q1,2,4s, ..., 4. are
the desired positions, and r is the design vector of
the mechanism, containing the design vectors of each
of the mechanism’s dyads.

6 Case Study

In this section we present an example of the design
of a spatial 4C mechanism for 10 position rigid body
guidance. The 10 desired positions are listed in Thl. 1
and shown in perspective projection in Figs. 5, 6, and
7 where the solid is the moving body drawn coinci-
dent with the fixed reference frame and the 10 de-
sired positions of the moving body are drawn in wire-
frame. The 28 dimensional design vector r is defined
in Tbl. 3, where @ and A are the fixed and moving
axes of each dyad,(a,b), and & is the corresponding
crank length. In general, Eq. 24 is difficult to solve.
We have found the Levenberg-Marquardt algorithm
to be a powerful tool in obtaining solutions to Eq. 24.
Specifically, we have used the version of the algorithm
found in the ZXSSQ subroutine of the IMSL FOR-
TRAN library. The results of the design procedure
are listed in Thl. 2 and Tbl. 3. In Fig. 4 we illus-
trate graphically the rigid body in its approximation
to position 4. The actual position of the moving body
is drawn as the solid and the desired position of the
moving body is shown in wireframe.



[ Pos. | Initial Error |

Final Error

1 6.02E+0 1.00E—1
2 4.10E+0 5.87E—3
3 3.46 E+0 1.05E—2
4 4.64E+0 2.86E—3
5 8.7TTE+0 3.27TE—2
6 L7TE+1 5.80E—2
7 3.02E+1 3.97TE—2
8 4.83E+1 3.77TE—2
9 1.33E+2 2.02E—2
10 1.71E+3 478E—2
S =107E+3 | 5. =3.56E—1

Table 2: Spatial 4C Synthesis: Position Results

Design Vector r

Definition | Initial Guess | Final Design

u, 0.25900 0.17766
0.54510 —0.90343

0.79730 0.39020

u? —0.56810 8.37209
1.29390 —1.64961

—0.70010 —~7.63127

e 0.70710 0.68875
0.00000 0.00853

0.70710 0.72495

A2 0.00000 0.00014
—0.70710 —0.72524

0.00000 0.00840

@, 1.38110 1.84000
aq 0.05970 —8.06718
up 0.23240 0.23824
0.62980 —0.85396

0.74120 0.46260

uf —0.52190 9.04575
0.71340 —1.62358
—0.44250 —7.65567

s 0.89440 0.88249
0.00000 —~0.01195

0.44720 0.47018

A 0.44720 0.47000
—0.44720 —0.47005
—0.89440 —0.89410

o 1.61160 2.05004
ap 1.59260 —8.17927

Table 3: Spatial 4C Synthesis: Optimization Results

Figure 4: Results for Position 4

7 Conclusion

In this paper we have presented our development
of an algorithm, originally proposed by Ravani and
Roth 1983, for the dimensional synthesis of spatial
4C mechanisms for n position rigid body guidance.
The synthesis procedure utilizes an algebraic formu-
lation for the constraint manifold of the CC dyad to
define the workspace of the 4C mechanism in the im-
age space of spatial displacements. The result of the
optimization is the set of design variables such that
the workspace of the mechanism contains, or comes
as close as possible to, the n desired positions.




Figure 5: The 10 Positions: top view

Figure 6: The 10 Positions: front view

Figure 7: The 10 Positions: side view
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